
Reactive Spin-locks: A Self-tuning Approach

Phuong Hoai Ha, Marina Papatriantafilou, Philippas Tsigas
Department of Computer Science and Engineering,

Chalmers University of Technology
S-412 96 G̈oteborg, Sweden

{phuong,ptrianta,tsigas}@cs.chalmers.se

Abstract

Reactive spin-lock algorithms that can automatically
adapt to contention variation on the lock have received
great attention in the field of multiprocessor synchroniza-
tion, since they can help applications achieve good perfor-
mance in all possible contention conditions. However, in
existing reactive spin-locks the reaction relies on (i) some
fixed experimentally tuned thresholds, which may get fre-
quently inappropriate in dynamic environments like multi-
programming/multiprocessor systems, or (ii) known proba-
bility distributions of inputs.

This paper presents a new reactive spin-lock algorithm
that is completely self-tuning, which means no experimen-
tally tuned parameter nor probability distribution of in-
puts are needed. The new spin-lock is built on a com-
petitive online algorithm. Our experiments, which use the
Spark98 kernels and the SPLASH-2 applications as appli-
cation benchmarks, on a multiprocessor machine SGI Ori-
gin2000 and on an Intel Xeon workstation show that the
new self-tuning spin-lock helps applications with different
characteristics achieve good performance in a wide range
of contention levels.

1. Introduction

Multiprocessor systems aim at supporting parallel com-
puting environments, where processes are running concur-
rently. In such parallel processing environments the inter-
ferences among processes are inevitable. Many concurrent
processes may cause high traffic on the system bus (or
network), high contention on memory modules and high
load on processors; all these slow down process executions.
These interferences generate a variable and unpredictable
environment to each process. Such a variable environment
consequently affects interprocess-synchronization methods
like spin-locks. Some complex spin-locks such as the MCS
queue-lock are good for high-load environments, whereas

others such as thetest-and-test-and-set lock are good for
low-load environments [10]. This fact raises a question on
constructing reactive spin-locks that can adapt to load varia-
tion in their surrounding environment so as to achieve good
performance in all conditions.

There exist reactive spin-lock algorithms in the litera-
ture [2, 10]. Spin-lock using thetest-and-test-and-set oper-
ation with exponential backoff (TTSE) [2] is an example:
every time a waiting process reads a busy lock, which im-
plies there is probably high contention on the lock, it will
double its backoff delay in order to reduce the contention.
Another reactive spin-lock that can switch from spin-lock
usingTTSE to a complex local-spin queue-lock when the
contention is considered high was suggested in [10].

However, these reactive spin-locks suffer some draw-
backs. First of all, their reactive schemes rely on either
some experimentally tuned thresholds or known probabil-
ity distributions of some inputs. Suchfixed experimental
threshold-values may frequently become inappropriate in
variable and unpredictable environments such as multipro-
gramming systems. Assumption on known probability dis-
tributions of some inputs is not usually feasible. Further, the
reactive spin-locks do not adapt to synchronization charac-
teristics of applications and thus they are inefficient for dif-
ferent applications. We observe that characteristics of ap-
plications such as delays inside/outside the critical sections
have a large impact on which spin-lock will help the appli-
cations achieve the best performance. Lim’s reactive spin-
lock [10], which switches toTTSE [2] when contention is
low and to MCS queue-lock [11] when contention is high,
was showed inefficient to some real applications [8]. A good
reactive spin-lock should not only react to the contention
variation on lock, but also adapt to a variety of applications
with different characteristics.

These issues motivated us to design a new reactive spin-
lock that requires neither experimentally tuned thresholds
nor probability distributions of inputs. The new spin-lock
moreover adapts itself to applications, keeping its good per-
formance on different applications.



while true do Noncritical section; Entry section; Critical section; Exit section; od

Figure 1. The structure for parallel applications

We classify spin-locks into two categories:arbi-
trating locks such as ticket-locks and queue-locks and
non-arbitrating locks such asTAS locks.Arbitrating locks
are locks that identify who is the next lock holder in ad-
vance. The rest of spin-locks arenon-arbitrating locks.

Arbitrating locks and non-arbitrating locks each have
their own advantages. Arbitrating locks prevent processors
from causing bursts in network traffic as well as high con-
tention on the lock. This is because they avoid the situation
that many processors concurrently realize the lock avail-
able and thus concurrently try to acquire the lock [2, 1, 6, 8,
11]. Although the advantages of arbitrating spin-locks have
been studied so widely, the following advantages of non-
arbitrating spin-locks have not been studied deeply. Non-
arbitrating locks have two interesting properties: i) toler-
ance to crash failures in the lock-competing phase, theEn-
try section in Figure 1, and ii) ability of exploitinglocal-
ity/cache and the underlying system supports such as page
migration [9]. The lock holder can re-acquire the lock and
re-use the exclusive shared data many times before the lock
is acquired by another processor, saving time used for trans-
ferring the lock and the shared data from one to another.
From experiments we observe that the non-arbitrating locks
is favored by applications with the critical section much
larger than the non-critical section (cf. Figure 1) to exploit
locality/cache whereas the arbitrating locks is favored by
ones with the critical section much smaller than the non-
critical section to avoid bursts both in network traffic and
in memory contention. This implies that characteristics of
a specific application can decide which kind of locks helps
the application achieve better performance. (Further discus-
sions on the advantages of both lock categories can be found
in [5].)

1.1. Contributions

We designed and implemented a new reactive spin-lock
with the following properties:

• It is completely self-tuning: neither experimentally
tuned parameters nor probability distributions of in-
puts are needed. The new reactive scheme automati-
cally adjusts its backoff delay reasonably according to
load on the lock as well as characteristics of applica-
tions. The scheme is built on a competitive online al-
gorithm.

• It combines the advantages of both arbitrating and non-
arbitrating spin-locks. In order to achieve this prop-
erty, the new spin-lock does not usestrict arbitrations

like ticket-locks, but instead introduces aloose form
of arbitration. This allows the spin-lock to be able to
exploit locality. Combining aloose arbitration with a
suitable reactive backoff scheme helps the new spin-
lock achieve the advantages of the both categories.

In addition to proving the correctness of the new spin-
lock, in order to test its feasibility we ran experiments us-
ing Spark98 kernels [12] and SPLASH-2 applications [13]
as application benchmarks on an SGI Origin2000, a well-
known commercial ccNUMA system, and on a popular
workstation with two Intel Xeon processors. These exper-
iments showed that in a wide range of contention levels the
new reactive spin-lock performed nearly as well as the best,
which was manually tuned for each benchmark on each
system. The new spin-lock uses synchronization primitives
fetch-and-add (FAA) andcompare-and-swap (CAS), which
are available in most recent systems either in hardware like
Intel and Sun machines or in software like SGI machines.

The rest of this paper is organized as follows. Sec-
tion 2 describes the problem and then models it as an on-
line problem. Section 3 presents a new competitive algo-
rithm for reactive spin-locks. Section 4 presents the perfor-
mance evaluation of the new reactive spin-lock and com-
pares the spin-lock with the representatives of arbitrating
and non-arbitrating spin-locks using the application bench-
marks. Finally, Section 5 concludes this paper. The correct-
ness proof of the new spin-lock is in [5] due to space con-
straints.

2. Problem and model

At a high abstraction level, parallel applications in our
research are typically described as a set of threads that run
the software structure shown in Figure 1 [1]. We consider
a system withP sequential processes running onP pro-
cessors. We assume that each process runs on one proces-
sor. In this case, we do not need to switch the process state
from spinning to blocking in theEntry section (cf. Figure 1),
i.e. there is no context-switching cost in the spin-lock over-
head [7].

First of all, we determine the upper/lower bounds of
backoff delays between two consecutive spins. Let “delay
base”basel of a lock l be the average interval in which the
lock holder keeps the lock locally before yielding it to an-
other process. In order to obtain a high probability of spin-
ning a free lock, a backoff delaydelayi between two con-
secutive spins of a processpi on the lockl should not be
smaller thanbasel, basel ≤ delayi. On the other hand, ac-



cording to Anderson [2] the upper bound for backoff delays
should equal the number of processes potentially interested
in acquiring the lock so that the backoff has the same per-
formance as statically assigned slots when there are many
spinning processes. This impliesdelayi ≤ P · basel, where
P is the number of processes potentially interested in ac-
quiring the lock. In conclusion,

basel ≤ delayi ≤ P · basel (1)

wheredelayi is a time-varying measure.
Secondly, we look at the problem of how to compute a

reasonabledelayi for the next backoff every time a wait-
ing processpi observes a busy lock. In theTTSE spin-lock
[2], the backoff delaydelayi is doubled up to some limit ev-
ery time a waiting process reads a busy lock. In fact, the
backoff scheme in theTTSE spin-lock comes from Ether-
net’s backoff scheme for networks with characteristics dif-
ferent from spin-locks. In networks the cost to a collision is
equal and independent of the number of processes whereas
in the spin-locks the cost depends on the number of par-
ticipating processes [2]. Therefore, the backoff scheme in
TTSE spin-lock is not competitive and its performance
heavily relies on how well its base/limit values are chosen.

In the rest of this section we analyze the problem and
then model it as an online game between a malicious adver-
sary and a player.

Let “delay surplus”surplusi of a processpi be

surplusi = (P · basel − delayi) (2)

We have0 ≤ surplusi ≤ (P − 1) · basel . Like delayi,
surplusi is a time-varying measure.

Definition 2.1. A load-rising (resp. load-dropping) transac-
tion phaseis a maximal sequence of processes’ subsequent
visits at the lock with monotonic non-decreasing (resp. non-
increasing) contention level on the lock1. A load-rising
phase ends when a decrease in contention is observed. At
that point, a load-dropping phase begins.

Our goal is to design a reactive non-arbitrating spin-lock
whose backoff delay (or delay in short) is dynamically and
optimally adjusted to contention variation on the lock. This
implies that we need to minimize two opposite factors: i)
the delay between a pair of lock release and lock acqui-
sition due to the backoff and ii) the communication band-
width used by spinning processes as well as the load on the
lock.

This is an online problem. Whenever a spinning process
pi observes a load increase on the lock, it has to decide
whether it should increase itsdelayi now. If it increases its
delay too soon, it will waste time on a long backoff delay

1 The contention level on a lock is measured by the number of processes
that are competing for the lock, cf. Section 3.

when the lock becomes available. If it does not increase its
delay in time, it will cause the same problems as spin-lock
usingTTS such as high network traffic, high contention on
the lock, which consequently delay the lock holder to re-
lease the lock. If the process knew in advance how con-
tention on the lock would vary in the whole competing pe-
riod, it would have been able to find an optimal solution.
However, there is no way for processes to know that infor-
mation, the information about the future in an unpredictable
environment.

We are interested in designing a deterministic online
algorithm against a malicious adversary for the spin-lock
problem. In such kind of problems, randomization cannot
improve competitive performance [4]. For deterministic on-
line algorithms the adversary with the knowledge of the al-
gorithms generates the worst possible input to maximize the
competitive ratio. The adversary creates transaction phases
that fool the player, a process competing for the lock, to in-
crease/decrease his delay incorrectly. This makes the player
end up with a bad result whereas the adversary still achieves
the best result.

Figure 2 illustrates how the adversary can create such
transaction phases. Assume that the adversary designsA as
an optimal load-point to increase the delay andB as an op-
timal load-point to decrease the delay. Since the adversary
has both knowledge of the deterministic algorithm used by
the player and full control on creating load inputs, the ma-
licious adversary can add a sequence of load-rising points
· · · ≤ a1 ≤ a2 ≤ · · · ≤ an < A that fools the player
to increase his delay up to the maximum before the load
reachesA (i.e. to fool the player to increase his delay too
soon). When the player observes a load increase on the lock,
he will increase his delay according to his deterministic al-
gorithm, and eventually his delay reaches the maximum at
some pointai before the load reaches pointA.

The goal of online/offline algorithms is to maximize
P =

∑
t∈Tj

∆surplusi,t · lt for each transaction phase
Tj , wherelt is the load at timet ∈ Tj and∆surplusi,t

is the additional amount of surplus that the player/process
pi spends at loadlt. The idea behind this goal is to put a
longer delay at a higher contention level reasonably. For the
game in Figure 2, the adversary achieves the best valueP at
A since he will use all his surplus “budget”,(P −1) · basel,
at the suitable load-pointA wherelt becomes maximum in
the load-rising transaction phaseTj . That means the player
increases his delay too soon, wasting time on a long back-
off delay when the lock becomes available.

Similarly, the adversary can fool the player on the load-
dropping phase fromA to B by adding a sequence of load-
dropping pointsb1 ≥ b2 ≥ · · · ≥ bm > B. When the player
observes a load decrease on the lock, he decreases his de-
lay, and eventually his delay reaches the minimum at some
point bj before the load reaches pointB. That means the



����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�
�
�

�
�
�

B

A

a1
a2

an b1
b2

bm

load

time
load−rising phase load−dropping phase

Figure 2. The transaction phases of con-
tention variations on the lock.

player decreases his delay too soon, causing high network
traffic and high contention on the lock.

Lastly, we determine upper/lower bounds of loadlt on
the lock. Load on the lock is the number of processes cur-
rently waiting for the lock, i.e.lt ≤ P . On the other hand, a
process needs to delay only if it could not acquire the lock,
so we have1 ≤ lt ≤ P .

In summary, the spin-lock problem can be described as
the following online game. With known upper/lower bounds
of load lt on the lock,1 ≤ lt ≤ P , the player (a processpi)
needs to spend his initial delay surplus (e.g.(P −1) · basel)
at lt efficiently. Loadlt are unfolded on-the-fly and when a
new valuelt is observed, a new period starts. Given a cur-
rent load value, the player has to decide how much of his
delay surplus should be spent at the current load, i.e. how
much his current backoff delay should be lengthened at the
current load.

3. The algorithm

In order to play against the malicious adversary, the
player needs acompetitive online algorithm for comput-
ing his backoff delay. When load on the lock increases,
the player has to reduce his delay surplus,surplus, by ex-
changing it with another assets calledsavings. When load
on the lock decreases, he increasessurplus by exchang-
ing thissavings back tosurplus.

The idea of our spin-lock algorithm is as follows. Dur-
ing a load-rising phaseTj , when the player observes a load
increase on the lock, he increases his delayjust enough to
keep a bounded competitive ratio even if the load suddenly
drops to the minimum in the next observation. The amount
of time by which the player’s delay increases is computed
similarly to thethreat-based method of [4]. The online al-
gorithm for computing the delay can be described by the
following rules:

• The delay is increased only when load on the lock is
the highest so far in the present transaction phase.

• When increasing delay, increasejust enough to keep
the competitive ratioc = P − P−1

P 1/(P−1) , even if the

load drops to the minimum in the next observation.

The amount of time by which the delay should increase
is:

∆delay = ∆surplus = initSurplus · 1

c
· load − load−

load − 1
(3)

whereinitSurplus is surplus at the beginning of a load-
rising transaction phase,load is the present load on the
lock observed by the player, andload− is the highest load
on the lock before the present observation (cf. procedure
Surplus2Savings in Figure 3).

The online algorithm is presented via pseudocode in Fig-
ure 3. Every time a new load-rising transaction phase starts,
the valueinitSurplus is set to the last value ofsurplus
in the previous transaction phase (lines C2, C3). At the be-
ginning of a transaction, load on the lock is initialized to
counter and delay = counter · basel, wherecounter,
a sort of ordering tickets, shows how many processes are
competing for the lock. Thecounter is obtained when the
process reads the lock at the first time (line A1). Each pro-
cess chooses an initialsurplus with respect to its own
ticket/counter (line A2)

initSurplus = (P − counter) · basel (4)

This helps the new spin-lock partly prevent processes from
concurrently observing a free lock, the worst situation for
non-arbitrating spin-locks.

Symmetrically, in a load-dropping phase the amount of
time by which the player’s delay should decrease is com-
puted by applying the same method with only one change,
namely that the value of load on the lockload, which is
decreasing, is replaced by the inverse1load (cf. procedure
Savings2Surplus).

Finally, we briefly explain the whole spin-lock algorithm
via pseudocode in Figure 3. In order to know the load on a
lock, we need a counter to count how many processes are
concurrently competing for the lock. If we used a separate
counter, we would generate an additional bottleneck beside
the lock. Therefore, we used a single-word variable to con-
tain both the lock and the counter (cf.LockType in Fig-
ure 3).

A processpi calls procedureAcquire(L) when it wants
to acquire lockL. The structure of the procedure is similar
to the spin-lock usingTTS except for the ways to compute
the delay and to update the lock. First,pi increases both val-
ues〈lock, counter〉 by 1 (lineA1). The lockL has been oc-
cupied ifL.lock �= 0. When spinning the lock locally (line
A5), if pi observes a free lock, i.eL.lock = 0, it will try to
acquire the lock by increasing only fieldL.lock by 1 (field
L.counter is kept intact, line A7). It will successfully ac-
quire the lock if no other processes have acquired the lock
in this interval, i.e.cond.lock = 0 (line A8).



type LockType = record lock, counter : [1..MaxProcs]; end;
LockStruct = record L : LockType; base : int; end;
InfoType = record load− : [1..MaxProcs];

phase : {Rising, Dropping};
surplus, initSurplus : int;
savings, initSavings : int; end;

private variables info : InfoType;
ACQUIRE(LockStruct pL)
A1 L := FAA(&pL.L, 〈1, 1〉); //increase counter,try to take lock

if L.lock then //lock is occupied
A2 info.initSurplus := info.surplus :=

(P − L.counter) · pL.base; //initialize variables
info.initSavings := info.savings :=
(L.counter · pL.base) · L.counter;

A3 delay := ComputeDelay(info, L.counter, pL.base);
cond := 〈1, 0〉; //conditional variable for while loop
do

A4 sleep(delay);
A5 L = pL.L; //read lock again
A6 if L.lock then //lock is still occupied

delay := ComputeDelay(info, L.counter);
continue;

A7 cond = FAA(&pL.L, 〈1, 0〉); //try to take lock
A8 while cond.lock;

int COMPUTEDELAY (InfoType I, int load, int base)
FirstInPhase := False;
if I.phase = Rising and load < I.load− then

C1 I.phase := Dropping; I.initSavings := I.savings;
FirstInPhase := True;

else if I.phase = Dropping and load > I.load− then
C2 I.phase := Rising; I.initSurplus := I.surplus;

FirstInPhase := True;
C3 if I.phase = Rising then

Surplus2Savings(I, load, F irstInPhase);
C4 else Savings2Surplus(I, 1

load , F irstInPhase);
C5 I.load− := load;
C6 return (P · base − I.surplus);

SURPLUS2SAVINGS (InfoType I, int load, bool FirstInPhase)
X := I.surplus; initX := I.initSurplus; Y := I.savings;
rXY := load; rXY − := I.load−;
if FirstInPhase then

if rXY > mXY · C then //mXY: lower bound of rXY
S1 ∆X := initX · 1

C · rXY −mXY ·C
rXY −mXY ; //C: comp. ratio

else

S2 ∆X := initX · 1
C · rXY −rXY −

rXY −mXY ;
S3 I.surplus := I.surplus − ∆X;

I.savings := I.savings + ∆X · rXY ;

SAVINGS2SURPLUS(InfoType I, 1
load , bool FirstInPhase)

/* Symmetric to procedure Surplus2Savings with:
X := I.savings; initX := I.initSavings;
Y := I.surplus; rXY := 1

load ; rXY − := 1
I.load− ; */

RELEASE (LockType pL)
R1 do L := pL.L;
R2 while not CAS(&pL.L, L, 〈0, L.counter − 1〉);

//release lock & decrease counter

Figure 3. The Acquire and Release proce-
dures

Processpi calls procedureRelease() when releasing the
lock. The procedure has to do two tasks atomically: i) reset
the lock field and ii) decrease thecounter field by 1. The
CAS primitive can do these tasks atomically (line R2).

Lemma 3.1. In each load-rising/load-dropping phase, the
new deterministic spin-lock algorithm is competitive with
competitive ratio c = P − P−1

P 1/(P−1) = Θ(log P ), where P

is the number of processes potentially interested in the lock.

Proof. The proof is similar to that of the threat-based pol-
icy in [4] and is let out due to space constraints.

Theorem 3.1. The new spin-lock algorithm guarantees mu-
tual exclusion and non-livelock. Its space complexity is
Θ(log P ) for systems with P processors.

Proof. The proof can be found in [5] due to space con-
straints.

Estimating the delay bases: So far we have assumed that
the basic intervalbasel in which a processpi keeps the
lock l locally before yielding it to other processes is known.
In [5], we describe how the new spin-lock estimates the
basel based on characteristics of each parallel application
such as delays outside/inside the corresponding critical sec-
tion. The estimation is left out due to space constraints.

4. Evaluation

Choosing non-arbitrating/arbitrating representatives: To
keep graphs uncluttered we chose an efficient representa-
tive for each category (i.e.arbitrating andnon-arbitrating).
We chose the ticket lock with proportional backoff
(TicketP ) as the representative for thearbitrating lock.
For non-arbitrating spin-locks, we chose as the representa-
tive theTTSE with backoff parameters tuned for both the
benchmarks and the evaluation systems.

Choosing application benchmarks: In order to compare
performance among different spin-lock algorithms, the ap-
plication benchmarks chosen should have highly contended
locks, which will noticeably promote efficient lock algo-
rithms (cf. Performance Goals for Locks in [3]). Therefore,
we chose as our application benchmarks the shared memory
program using lockslmv from the Spark98 kernel [12] and
the applications from the SPLASH-2 suite [13]: Volrend,
which uses one lock, instead of an array of locksQLock, to
protect a global queue, and Radiosity.

Platforms used in the evaluation: The main system used
for our experiments was a ccNUMA SGI Origin2000 with
twenty eight 250MHz MIPS R10000 CPUs. The system ran
IRIX 6.5 and it was used exclusively. We also used as an
evaluation platform a popular workstation with two Intel
Xeon 3GHz CPUs. The workstation ran Linux kernel 2.6.8.

We compared our new reactive spin-lock withTTSE
andTicketP , both of which weremanually tuned for each
application benchmark on each platform. Contention on the
lock was varied by changing the number of participating
processors/threads. The execution times of the application
benchmarks were measured.



Spark98_Complete_Sgi2k_ExecTime

0

200

400

600

800

1000

1200

1 4 8 12 16 20 24 28
#processors

tim
e 

(m
s)

tts ticket reactive

Volrend_Sgi2k_ExecTime

0

100

200

300

400

500

600

700

800

900

1000

4 8 12 16 20 24 28
#processors

tim
e 

(m
s)

tts ticket reactive

Radiosity_Sgi2k_ExecTime

0

2000

4000

6000

8000

10000

12000

14000

16000

4 8 12 16 20 24 28
#processors

tim
e 

(m
s)

tts ticket reactive

Figure 4. The execution time of Spark98, Volrend and Radiosity applications on the SGI Origin2000.

4.1. Results

The new reactive spin-lock in Figure 3 involved in all
locks with high contention. Such locks play significant roles
in application execution time and promote efficient spin-
lock algorithms. Working on such high contention locks,
processes always have to delay between two consecutive ac-
cesses. The new reactive spin-lock utilizes the delay inter-
val to compute a reasonable value for the next delay. This is
reason why even though the new reactive spin-lock appears
quite heavy compared with the non-arbitrating/arbitrating
representatives, it is actually efficient.

Figure 4 shows average execution times of appli-
cations Spark98, Volrend and Radiosity usingTTSE
(tts), TicketP (ticket) and the new reactive spin-lock
(reactive) on the SGI platform. All the three charts show
that the new reactive spin-lock approaches the best per-
formances, which are thetts performance in the case of
Spark98 and theticket performance in the cases of Vol-
rend and Radiosity. Note that the new reactive algorithm
without tuning performed similarly to the better of two rep-
resentativeswith manual tuning of non-arbitrating and
arbitrating categories. Experiments on the Intel plat-
form showed a similar result: the new spin-lock performed
as well as the best representative.

Further discussions on the evaluation as well as on the
results can be found in [5].

5. Conclusions

We have presented a new reactive spin-lock that is com-
pletely self-tuning, namely neither experimentally tuned
thresholds nor probability distributions of inputs are re-
quired. The new spin-lock combines advantages of both ar-
bitrating and non-arbitrating spin-locks. These features are
achieved by a competitive algorithm for adjusting backoff
delay reasonably to contention on the lock. Moreover, the
new spin-lock also adapts itself to synchronization charac-
teristics of applications to keep its good performance on
different applications. Experimental results showed that the
new spin-lock achieved good performance on different plat-
forms.

References

[1] J. H. Anderson, Y.-J. Kim, and T. Herman. Shared-memory
mutual exclusion: Major research trends since 1986.Dis-
tributed Computing, 16(2-3):75–110, 2003.

[2] T. E. Anderson. The performance of spin lock alternatives for
shared-money multiprocessors.IEEE Trans. Parallel Dis-
trib. Syst., 1(1):6–16, 1990.

[3] D. E. Culler, J. P. Singh, and A. Gupta. Parallel computer
architecture: A hardware/software approach.Morgan Kauf-
mann Publisher, 1999.

[4] R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. Optimal
search and one-way trading online algorithms.Algorithmica,
30(1):101–139, 2001.

[5] P. H. Ha, M. Papatriantafilou, and P. Tsigas. Reactive spin-
locks: A self-tuning approach.Tech. Report 2005:16, Com-
puting Science, Chalmers Univ., 2005.

[6] A. K ägi and D. B. J. R. Goodman. Efficient synchroniza-
tion: Let them eat QOLB. InProc. of the 24th Intl. Symp. on
Computer Architecture, pages 170–180, 1997.

[7] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Em-
pirical studies of competitve spinning for a shared-memory
multiprocessor. InProc. of the 13th ACM Symp. on Operat-
ing systems principles, pages 41–55, 1991.

[8] S. Kumar, D. Jiang, J. P. Singh, and R. Chandra. Evalu-
ating synchronization on shared address space multiproces-
sors: Methodology and performance. InProc. of the Intl.
Conf. on Measurement and Modeling of Computing Systems,
pages 23–34, 1999.

[9] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
highly scalable server. InProc. of the 24th Intl. Symp. on
Computer Architecture, pages 241–251, 1997.

[10] B. Lim. Reactive synchronization algorithms for multipro-
cessors.PhD. Thesis, 1995.

[11] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiproces-
sors.ACM Trans. Comput. Syst., 9(1):21–65, 1991.

[12] D. R. O’hallaron. Spark98: Sparse matrix kernels for shared
memory and message passing systems.Tech. Report CMU-
CS-97-178,Comp. Science, Carnegie Mellon Univ., 1997.

[13] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and method-
ological considerations. InProc. of the 22nd Intl. Symp. on
Computer Architecture, pages 24–36, 1995.


